Today we are listening in to a conversation between Achill and the Turtle.

**Achill**: I have been conducting research on the performance of wireless links for a while now, and I learnt that analyzing a fixed deterministic channel does not lead to insightful and general results. To capture a variety of channel conditions and obtain crisp analytical results, it is necessary to model the channel by a random process, even though physically there is no randomness in wireless propagation.

**Turtle**: Indeed. There are now families of channel models that are widely accepted, and it is mandated that researchers incorporate them in their published work. This way, the mean performance of a link (in terms of throughput, delay, and reliability) can be obtained by averaging over the likely channel conditions. In a more refined analysis, distributions of performance metrics are derived.

**Achill**: This is all good and nice, but lately I am trying to look beyond individual links and consider networks of wireless transceivers. In this case, the performance greatly depends on the distances between a receiver and its intended and interfering transmitters. But I don’t want to calculate results for a single fixed geometry – it is unwieldy and would apply only for those exact locations of transceivers. I know some people have randomized the propagation losses by assuming they are all iid across the network, but this would imply that all nodes have the same distance from all other nodes…

**Turtle**: …which would mean there can be at most *d* +1 nodes in a *d* -dimensional network.

**Achill**: Yes, and such a triangular or tetrahedral arrangement is very unlikely to occur. So unfortunately I have to resort to lengthy Monte Carlo simulations for my performance evaluations. If only there were analytical models, like the random processes I use for channel fading, that could characterize the network geometry…

**Turtle**: …plus a mathematical framework that would allow the derivation of analytical results, averaged over the likely network configurations. Or even reveal distributions of the quantities of interest. That would be extremely powerful and could lead to great new insights, much more so than simulations.

**Achill**: Very true. Too bad that this is just wishful thinking…

**Turtle**: Well, as a researcher it is important to keep an open mind.

**Achill**: Good point!